Esteróides são álcoois de alto peso molecular. São compostos lipossolúveis muito importantes na fisiologia humana. Os esteróis possuem uma estrutura básica chamada de peridrociclopentanofenantreno, como mostra a figura a seguir:

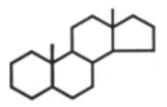


Figura 1: peridrociclopentanofenantreno

Classifica-se um esterol pela sua origem: zoosteróis, provenientes de animal; fitosteróis, de vegetal e micosteróis, de microorganismos.

Dentre os zoosteróis falaremos do mais abundantes deles, o colesterol.

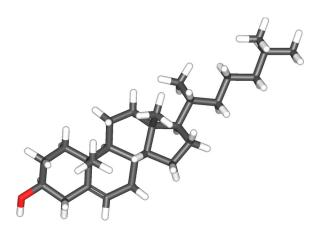


Figura 2: estrutura espacial do colesterol

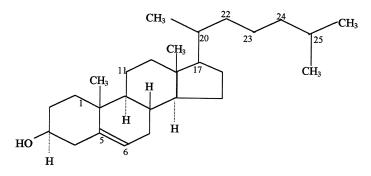


Figura 3: configuração absoluta do colesterol

O colesterol é essencial na fisiologia humana, pois é um reagente de partida para a síntese ácidos biliares, hormônio, além de constituir a estrutura das membranas celulares.

O colesterol é sintetizado na sua maior parte pelo fígado e regulado por um sistema compensatório, ou seja, quando se ingere pouco colesterol, há um aumento na síntese do colesterol; por isso não é necessário que o ser humano tenha uma dieta rica em colesterol (aproximadamente 75% do colesterol é produzido pelo organismo – colesterol endógeno - e 25% é adquirido pela alimentação – colesterol exógeno).

Ao contrário do que muitos pensam o colesterol não é encontrado apenas no sangue, mas sim em todos os tecidos do corpo humano. Os principais estão na tabela abaixo.

Tabela 1: distribuição aproximada de colesterol num homem de 70kg

Sistema		Colesterol			
	Peso (g)	Concentração	Quantidade	Porcentagem	
		(% peso)	(g)	do colesterol total	
				no corpo	
Cérebro e	1600	2,0	32,0	22	
sistema nervoso					
Tecidos	12100	0,25	31,3	22	
conjuntivos					
(incluindo					
adiposo) e					
fluídos corporais					
Músculos	30000	0,1	30,0	21	
Pele	4200	0,3-0,7	16,0	11	
Sange	5400	0,2	10,8	8	
Medula	3000	0,25	7,5	5	
óssea					
Fígado	1700	0,3	5,1	4	
Trato	2500	0,15	3,8	3	
digestório					
Pulmões	950	0,2	1,9	1	
Rins	300	0,25-0,34	0,9	1	
Glândulas	12	2,6-15	1,2	1	
supra-renais					
Outras	100	0,2	0,2		
glândulas					
Coração	350	0,9-0,18	0,6		
Baço	200	0,16-0,34	0,5		
Vasos	200	0,25	0,5		
sanguíneos					
Esqueleto	7000	0,01	0,7		
			143,0		

O transporte do colesterol no sangue é muito importante para que possa ser levado a todos os tecidos do corpo. Mas, como podemos ver na figura 2, (o colesterol) é composto basicamente de carbono, ou seja, é insolúvel em água, consequentemente, insolúvel no sangue.

Sendo assim o colesterol é transportado no plasma na forma de lipoproteínas.

Lipoproteínas são agregados de macromoléculas como triagliceróis (TG) e ésteres de colesterol envolvidos por uma camada de fosfolipídios, proteínas e colesterol livre, ou seja, as lipoproteínas possuem um centro hidrofóbico, mas no seu exterior, são hidrossolúveis.

Como podemos ver na figura a seguir, as lipoproteínas são como micelas.

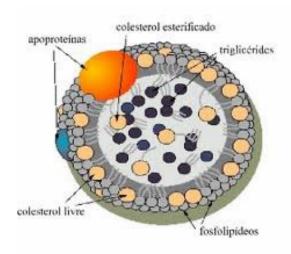


Figura 4: esquema de uma lipoproteína

Essas lipoproteínas são classificadas de acordo com a sua densidade. As principais são:

- Quilomicrons
- VLDL (very low-density lipoprotein) lipoproteínas de densidade muito baixa
 - LDL (low density lipoprotein) lipoproteínas de baixa densidade
 - HDL (high density lipoprotein) lipoproteínas de alta densidade

Tabela 2: características e funções das lipoproteínas plasmáticas

Característica	Classes das lipoproteínas					
	Quilomicrons	VLDL	LDL	HDL		
Densidade	<0,95	0,95 – 1,006	1,019 – 1,063	1,063 – 1,210		
(g/mL)						
Origem	intestino	fígado e	fígado	fígado e		
		intestino		intestino		
Função	transporte de	transporte de	transporte do	transporte		
fisiológica	TG da dieta	TG endógenos	colesterol	reverso do		
				colesterol		

Nesse texto vamos focar no colesterol, portanto trataremos de LDL e HDL, que, como podemos ver, são as lipoproteínas que transportam o esterol em questão.

HDL e LDL

O LDL carrega a maior parte do colesterol pelo sangue, certa de 70%. O LDL consegue se ligar a membranas das células, como por exemplo, nos vasos sanguíneos. Ali ele vai se oxidar e ficar depositado. Isso gera uma inflamação no vaso e formam-se "placas", chamadas de ateromas.

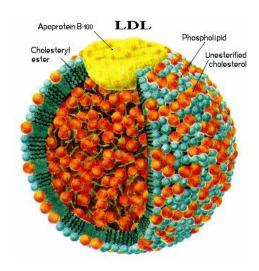


Figura 5: esquema do LDL

Esse acúmulo pode levar a diminuição do diâmetro do vaso que pode até chegar a ser obstruído. Esse problema é uma doença chama aterosclerose.

É por esse motivo que o LDL é conhecido como "mau-colesterol".

Por sua vez, o HDL é responsável por fazer o caminho inverso: carregar o excesso de colesterol do sangue de volta para o fígado.

O colesterol, ao retornar ao fígado, pode ser degradado a ácido biliar, que é então liberado no intestino delgado.

O HDL, devido a esse motivo, é conhecido como "bom-colesterol"; mas o seu excesso também não é favorável, pois ao transportar muito colesterol de volta pro fígado (que está interligado com a vesícula biliar), pode haver a cristalização do colesterol e a formação de pedra na vesícula.

Ou seja, é necessário controlar tanto o índice de LDL como também o de HDL.

Bibliografia

- [1] SOLOMONS, T. W. Graham; Fryhle, Craig B. Química Orgânica, vol. 1 e 2. 9 ed. LTC, 2009
 - [2] SABINE, John. R.; Cholesterol, Ed New York: M. Dekker, 1977
- [3] FERREIRA, J. de S.; Avaliação do Coeficiente de Partição do Colesterol entre duas fases: Solução saponificada e Hidrocarbonetos. Tese mestrado Faculdade de Engenharia Química, Universidade Estadual de Campinas, 2000.
- [4] BRAGNOLO, N.; Determinação dos teores de Colesterol em carnes, ovos e massas com ovos. Tese mestrado Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 1992.